

Neural Networks

(P-ITEEA-0011)

Introduction to the course Single layer perceptron

Akos Zarandy Lecture 1 September 10, 2019

Outline

- Administration: requirements of the course
- Machine learning Machine intelligence
- Artificial neuron
- Perceptron

Course requirements: Signature requirements

- Mandatory **<u>attendance</u>** 80% (lectures and practice sessions)
- **Short quiz** at every practice session.
 - You have to reach at least 60% of all points
- Lab report: one can be skipped
- **Paper based test**: minimum 50%
- **<u>Computer-based test</u>**: minimum 50%

Course requirements: Lab Reports

- Lab reports are short summaries of the previous practice session
- You will have to work in teams of 3 (talent program alone)
- Submission: on the main page of the course until 4 am the day before the next practice session
- Contents:
 - Your names, your email addresses, the time and date of the practice session
 - A brief description of the new methods/techniques and their mathematical background (if applicable) we used
 - A general description of the dataset we used (with examples from the dataset) (if applicable)
 - If we used any new network architectures, a detailed description of that specific architecture.
- You may use Internet, however you must cite that source, else your report will not be accepted. The same goes for too similar lab reports.

Course requirements: Midterm project

- Not mandatory in general
 - Mandatory for the <u>talent program</u>
- Required to earn an offered grade
- You will need to apply for it after it is announced
- Once you choose a task, nobody else can, so there will be no possibility of changing your task, or cancelling your selection
- You will have to submit an acceptable solution, otherwise your final score will be reduced by 20%

Course requirements: Tests

- Paper-based test
 - 15. October
 - Theoretic questions and paper based calculations
 - In the time and location of the lecture
 - You need to score at least 50% to pass

Computer-based test

- Considered to be a part of the exam
- The test will be held at the end of the semester, it will be 3-4 hours long
- The test will be graded on the spot
- You need to score at least 50% to pass

Course requirements: Exam and grade

- Exam
 - Oral exam
- Offered grade
 - Only a 4 or 5 can be received
 - Limits on the offered grades:

Detailed description of the requirements on the webpage of the course: <u>http://users.itk.ppke.hu/~konso1/neural_networks</u>

- > 85% of the short quizzes, the closed-room test
- Midterm project required, final grade depends on it
- Early exam
 - There will also be an exam in the first of the exam period (before the computer-based test) for those students who excelled most during the semester. This exam is invite-only by the lecturers, and if you are invited, you are excused from the computer-based test

Outline

- Administration: requirements of the course
- Machine learning Machine intelligence
- Artificial neuron
- Perceptron

Machine learning, machine intelligence

- What is intelligence?
- The ability to acquire and apply knowledge and skills.
- The definition changes continuously

Machine learning, machine intelligence

- What is intelligence?
- The ability to acquire and apply knowledge and skills.

Intelligence is the ability to adapt to change

"Stephen Hawking"

Providing computers the ability to learn without being explicitly programmed:

Involves: programming, Computational statistics, mathematical optimization, image processing, natural language processing etc... 1N73LL1G3NC3 15 7H3 4B1L17Y 70 4D4P7 70 CH4NG3. -573PH3N H4WK1NG

Conventional approach

- Trivial, or at least analitically solvable tasks
 - Well established mathematical solution exist or at least can be derived
- Example:
 - Finding well defined data constellations in a database
 - Formal verification of the operation is easy

Machine learning approach

- Complex underspecified tasks
 - No exact mathematical solution exists, the function to be implemented is not known
- Example:
 - Searching for "strange" data constellations in a database
 - Verification of the operation is difficult

In case of very complex problems, verification of the operation is very difficult. Typically done by exhaustive testing in case of machine learning.

"Cat"

General truth: there are no general truths

Machine learning

We consider each task as an input-output problem

X: scalar, vector, array or a sequence of these (incl. text)

9/10/2019

size(X) vs size(Y) Data reduction Data generation Y: Decision or scalar, vector, array or a sequence of these (incl. text)

Conquests of machine learning

• 1952 Arthur Samuel (IBM): First machine learning program playing checkers

Arthur Samuel coined the term "machine learning"

Conquests of machine learning

- 1952 Arthur Samuel (IBM): First machine learning program playing checkers
- 1997 IBM Deep Blue Beats Kasparov

First match (1996 Nov): Kasparov–Deep Blue (4–2) Second Match (1997 May): Deep Blue–Kasparov (3½–2½)

- 1952 Arthur Samuel (IBM): First machine learning program playing checkers
- 1997 IBM Deep Blue Beats Kasparov
- 2011 IBM Watson: Beating human champions in Jeopardy

It's a 4-letter term for a summit; the first 3 letters mean a type of simian : **Apex**

4-letter word for a vantage point or a belief : **View**

Music fans wax rhapsodic about this Hungarian's "Transcendental Etudes" : Franz Liszt

Conquests of machine learning

- 1952 Arthur Samuel (IBM): First machine learning program playing checkers
- 1997 IBM Deep Blue Beats Kasparov
- 2011 IBM Watson: Beating human champions in Jeopardy
- 2014 Deep face algorithm Facebook

Reached 97.35% accuracy Human performance is around 97%

Conquests of machine learning

- 1952 Arthur Samuel (IBM): First machine learning program playing checkers
- 1997 IBM Deep Blue Beats Kasparov
- 2011 IBM Watson: Beating human champions in Jeopardy
- 2014 Deep face algorithm Facebook
- 2016 Alpha go: deep learning

Fan Hui (5-0) Lee Sedol (4-1) 99.8% win rate against other Go programs

Deep learning - why now?

1. Appearance of machine learning methods and frameworks, optimization know-how, new tools for rapid experimentation

Deep learning - why now?

- 1. Appearance of machine learning methods and frameworks, optimization know-how, new tools for rapid experimentation
- 2. New architectures are available for computation
 - (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)
 - (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)

Deep learning - why now?

- 1. Appearance of machine learning methods and frameworks, optimization know-how, new tools for rapid experimentation
- 2. New architectures are available for computation
 - (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)
 - (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)
- 3. Vast amount of data is available
 - Billions of labeled images available quasi free

Outline

- Administration: requirements of the course
- Machine learning Machine intelligence
- Artificial neuron
- Perceptron

Copying the brain?

History of the artificial neural networks

- Artificial neuron model, 40's (McCulloch-Pitts, J. von Neumann);
- Synaptic connection strenghts increase for usage, 40's (Hebb)
- Perceptron learning rule, 50's (Rosenblatt);
- ADALINE, 60's (Widrow)
- Critical review ,70's (Minsky)
- Feedforward neural nets, 80's (Cybenko, Hornik, Stinchcombe..)
- Back propagation learning, 80's (Sejnowsky, Grossberg)
- Hopfield net, 80's (Hopfield, Grossberg);
- Self organizing feature map, 70's 80's (Kohonen)
- CNN, 80's-90's (Roska, Chua)
- PCA networks, 90's (Oja)
- Applications in IT, 90's 00's
- SVMs, statistical machines 2000-2010's
- Deep learning, Convolutional Neural Networks 2010-

The artificial neuron (McCulloch-Pitts)

- The artificial neuron is an information processing unit that is basic constructing element of an artificial neural network.
- Extracted from the biological model

The artificial neuron

- Receives input through its synapsis (x_i)
- Synapsis are weighted (*w_i*)
 - if w_i > 0 : amplified input from that source (excitatory input)
 - if w_i < 0 : attenuated input from that source (inhibitory input)
- A b value biases the sum to enable asymmetric behavior
- A weighted sum is calculated
- Activation function shapes the output signal

 x_i : input vector

 w_{ki} : weight coefficient vector of neuron k

 b_k : bias value of neuron k

 o_k : output value of neuron k 9/10/2019.

The artificial neuron

• Output equation:

$$y_k = \varphi \left(\sum_{i=1}^m w_{ki} x_i + b_k \right)$$

 x_i : input vector (*i*: 1....m) w_{ki} : weight coefficient vector of neuron k

 b_k : bias value of neuron k

 o_k : output value of neuron k

Activation functions (1)

- Activation function: φ(.)
 - Always a nonlinear function
 - Typically it clamps the output (introduces boundaries)
 - Monotonic increasing function
 - Differentiable
 - Important from theoretical point of view
 - Or at least continuous (except in simplified cases)
 - Sophisticated training algorithms require continuity

Activation functions (2)

• <u>Sigmoid</u> (or logistic) function is a widely activation function

$$y = \varphi(u) = \frac{1}{1 + e^{-\lambda u}}$$

where 0.9 0.8 $u = \sum w_i x_i = \mathbf{w}^T \mathbf{x}$ 0.7 $1 + e^{-x}$ 0.6 0.5 i=00.4 0.3 0.2 0.1 0 -5 5 10 -10 0

Activation functions (3)

hard nonlinearity

ν

soft nonlinearity

(continuously differentiable)

Activation function (4)

- Bipolar activation function: tanh
- Continuously differentiable
- Monotonic
- Useful, when bipolar output is expected
- Hard approximations:
 - Piece-wise
 - Step-wise

Elementary set separation by a single neuron (1)

• Let us use φ(.) step nonlinear function for siplicity:

$$y = \varphi(u) = \frac{sign(u)}{2} + \frac{1}{2} = \begin{cases} 1, \text{ if } u \ge 0\\ 0, \text{ else} \end{cases}$$

• The output of the neuron will be binary:

$$y = \varphi(u) = \frac{sign(w^T x)}{2} + \frac{1}{2} = \begin{cases} 1, \text{ if } w^T x \ge 0\\ 0, \text{ else} & \text{DECISION!} \end{cases}$$

41

9/10/2019.

9/10/2019.

P-ITEEA-0011 Lecture 1

Elementary set separation by a single neuron (3)

- Neuron with *m* inputs has an *m* dimensional input space
- Neuron makes a linear decision for a 2 class problem
- The decision boundary is a hyperplane defined:

$$\mathbf{w}^T \mathbf{x} = \mathbf{0}$$

Why it is so important to use set separation by hyper plane? (1)

- Most logic functions has this complexity (OR, AND)
- There are plenty of mathematical and computational task which can be derived to a set separation problem by a linear hyper plane
- Application of multiple hyper plane provides complex decision boundary

Implementation of a single logical function by a single neuron (1)

AND			- (-)	X_2		
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₂				
0	0	0	1			
0	1	0				
1	0	0		1	X	
1	1	1				

• The truth table of the logical AND function.

• 2-D AND input space and decision boundary

Implementation of a single logical function by a
single neuron (2)Implementation by a
with a single neuron (2)We need to figure out the separation surface!X2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

$$-1.5 + x_1 + x_2 = 0$$

$$w_0 = -1.5;$$
 $w_1 = 1;$ $w_2 = 1;$

$$y = \frac{sign(u)}{2} + \frac{1}{2} = \begin{cases} 1, & \text{if } u \ge 0\\ 0, & \text{else} \end{cases}$$

$$u = \sum_{i=0}^{m} w_i x_i = \mathbf{w}^T \mathbf{x}$$

Lecture 1

P-ITFFA-0011

$$x_0 = 1$$

Χ1

AND

 X_{2}

0

1

0

0

 X_1

0

1

9/10/2019.

•

Implementation of a single logical function by a single neuron (3)

- Furthermore instead of 2D, we can actually come up with the *R* dimensional AND function.
- The weights corresponding to the inputs are all 1 and threshold should be R – 0.5. As a result the actual weights of the neuron are the following:

$$\mathbf{w}^{\mathrm{T}} = (-(R-0.5), 1, ..., 1)$$

Implementation of a single logical function by a single neuron (4) OR **X**₂ $x_1 OR x_2$ **X**₂ **X**₁ 0 0 0 0 1 1 1 0 1 X_1 1 1 1

The truth table of the logical OR function.
 w = (-0.5, 1, 1).
 2-D OR input space and decision boundary

Implementation of a single logical function by a single neuron (5)

- However we cannot implement every logical function by a linear hyper plane.
- Exclusive OR (XOR) cannot be implemented by a single neuron (linearly not separable)
 x₂

Outline

- Administration: requirements of the course
- Machine learning Machine intelligence
- Artificial neuron
- Perceptron

Perceptron

- One or a set of neurons sharing the same input
- Typically used for decision making
- Multiple decisions from the same data
- Activation function •
 - Originally step function
 - Sigmoid or Tanh or their piece-wise linear approximation is used nowadays
 - Sophisticated training algorithms require differentiable or at least continuous functions

Perceptron Hypothesis Set

Credit Approval Problem Revisited Applicant Information 23 years age female gender annual salary NTD 1,000,000 unknown target function year in residence 1 year $f: \mathcal{X} \to \mathcal{Y}$ year in job 0.5 year (ideal credit approval formula) current debt 200,000 learning training examples final hypothesis algorithm \mathcal{D} : $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$ $g \approx f$ \mathcal{A} (historical records in bank) ('learned' formula to be used) hypothesis set \mathcal{H} (set of candidate formula) what hypothesis set can we use? 9/10/201 Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 2/22

Learning to Answer Yes/No

Perceptron Hypothesis Set

A Simple Hypothesis Set: the 'Perceptron'

age	23 years	
annual salary	NTD 1,000,000	
year in job	0.5 year	
current debt	200,000	

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and $\sum_{i=1}^{d} w_i x_i > \text{threshold}$ $\sum_{i=1}^{d} w_i x_i < \text{threshold}$ approve credit if

deny credit if

• \mathcal{Y} : {+1(good), -1(bad)}, 0 ignored—linear formula $h \in \mathcal{H}$ are $h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_i x_i\right) - \operatorname{threshold}\right)$

called 'perceptron' hypothesis historically

9/10/201

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

3/22

• labels y:

◦ (+1), × (-1)

- hypothesis h: lines (or hyperplanes in ℝ^d)
 —positive on one side of a line, negative on the other side
- different line classifies customers differently

perceptrons \Leftrightarrow linear (binary) classifiers

9/10/201

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

5/22